Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319027

RESUMO

Microbial resistance against common antibiotics has become one of the most serious threats to human health. The increasing statistics on this problem show the necessity of finding a way to deal with it. In recent years, antimicrobial peptides with unique properties and the capability of targeting a wide range of pathogens, have been considered as a potential for replacing common antibiotics. A small chitin-binding protein with anticandidal activity was isolated from Moringa oleifera seeds by Neto and colleagues in 2017, which very much resembled antimicrobial peptides. In this study, the antimicrobial protein 'AF-DP' was identified and characterized. AF-DP was heterologously expressed, purified, and characterized, and its 3D structure was predicted. Six molecular dynamic simulations were performed to investigate how the protein interacts with Gram-negative inner and outer, Gram-positive, fungal, cancerous, and normal mammalian membranes. Also, its antimicrobial and anticancer activity was assessed in vitro via minimum inhibition concentration (MIC) and MTT assays, respectively. This protein with 111 amino acids and a total net charge (of 10.5) has been predicted to be mainly composed of alpha helix and random coils. Its MIC affecting the growth of Escherichia coli, Staphylococcus aureus, and Candida albicans was 30 µg/ml, 100 µg/ml, and 100 µg/ml, respectively; AF-DP showed anticancer activity against MCF-7 breast cancer cell line. Scanning electron microscopic analysis confirmed the creation of pores and scratches on the surface of the bacterial membrane. The results of this research show that AF-DP can be a candidate for the production of new drugs as an AMP with antimicrobial activity.Communicated by Ramaswamy H. Sarma.

2.
Iran Biomed J ; 28(1): 1-7, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224028

RESUMO

The present study aims to provide an insight to the comprehensive efforts of Pasteur Institute of Iran (PII) regarding COVID-19 management, research, achievements, and vaccine production, though there are many challenges. The relevant literature review was investigated through national and international database and also reports from the related research departments. Six strategies were taken by PII to manage the pandemic of COVID-19. While this pandemic has been hopefully controlled, SARS-CoV-2 could still be a potential threat. Therefore, COVID-19 data management and updated studies, as well as long-term safety and efficacy of the SARS-CoV-2 vaccines are still on the agenda.


Assuntos
COVID-19 , Vacinas Virais , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias/prevenção & controle , Irã (Geográfico)/epidemiologia , Políticas
3.
Life Sci ; 340: 122456, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266814

RESUMO

AIMS: Human papillomavirus (HPV) infections are highly prevalent globally. While preventive HPV vaccines exist, therapeutic vaccines are needed to treat existing HPV lesions and malignancies. This study evaluated the immunostimulatory and anti-tumor effects of three therapeutic vaccine candidates based on the recombinant protein, tumor cell lysate (TCL), and engineered exosome (Exo) harboring the heat shock protein 27 (Hsp27)-E7 fusion construct in mouse model. MAIN METHODS: At first, the recombinant Hsp27-E7 protein was generated in E. coli expression system. Then, tumor cell lysates-based and engineered exosomes-based vaccine constructs harboring green fluorescent protein (GFP) and Hsp27-E7 were produced using lentiviral system. Finally, their immunological and antitumor effects were investigated in both prophylactic and therapeutic experiments. KEY FINDINGS: Our data showed that the recombinant Hsp27-E7 protein, TCL-Hsp27-E7 and Exo-Hsp27-E7 regimens can induce the highest level of IFN-γ, TNF-α and Granzyme B, respectively. The percentage of tumor-free mice was identical for three vaccine strategies (survival rate: 75 %) in both prophylactic and therapeutic experiments. Generally, the TCL-Hsp27-E7, Exo-Hsp27-E7 and recombinant Hsp27-E7 protein regimens induced effective immune responses toward Th1 and CTL activity, and subsequently antitumor effects in mouse model. SIGNIFICANCE: Regarding to higher Granzyme B secretion, lower tumor growth and more safety, the Exo-Hsp27-E7 regimen can be considered as the most promising HPV vaccination strategy.


Assuntos
Exossomos , Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Animais , Camundongos , Vacinas contra Papillomavirus/genética , Granzimas/metabolismo , Proteínas de Choque Térmico HSP27 , Exossomos/metabolismo , Infecções por Papillomavirus/prevenção & controle , Escherichia coli/metabolismo , Proteínas E7 de Papillomavirus/genética , Camundongos Endogâmicos C57BL
4.
J Biomol Struct Dyn ; : 1-17, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088331

RESUMO

Hemagglutinin (HA), a variable viral surface protein, is essential for influenza vaccine development. Annually, traditional trivalent vaccines containing influenza A/H1N1, A/H3N2 and B viruses are administered globally, which are not very effective for the mutations in HA protein. The aim of this study was to design a multi-epitope vaccine containing epitopes of the HA protein of H1N1, H3N2 and B viruses using immunoinformatics methods. The HA protein epitope prediction was performed using Immune Epitope Database. Toxicity, antigenicity and conservancy of the epitopes were evaluated using ToxinPred, VaxiJen and Epitope Conservancy Analysis tools, respectively. Then, nontoxic, antigenic and high conserved epitopes with high prediction scores were selected. Their binding affinity was evaluated against human and mouse MHC class I and II molecules using the HPEPDOCK tool. Physicochemical properties and post-translational modifications were evaluated using ProtParam, SOLpro and MusiteDeep tools, respectively. Top selected epitopes were joined using linkers to produce the best effective recombinant trivalent vaccine candidate to elicit cellular and humoral immune responses in mouse and human host models. These sequences were modeled and verified. By evaluating the results of various analyses of all models and the most similarity to the native HA protein, model 5 was selected as the best model. Finally, in silico cloning of this model as vaccine candidate was performed in pET21. This study was a computer-aided analysis for a multi-epitope trivalent recombinant vaccine candidate against influenza viruses. The efficiency of our best model of vaccine candidates should be validated using in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.

5.
Virol J ; 20(1): 296, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093303

RESUMO

BACKGROUND: To improve the patient care, public health surveillance, and infection control, it is crucial to identify the presence and frequency of the common respiratory infections in individuals with COVID-19 symptoms but tested negative for SARS-CoV-2. This study aimed to shed light on this during the COVID-19 pandemic in Iran. METHODS: In this cross-sectional study, a total of 1,002 patients with acute respiratory infection who had negative SARS-CoV-2 test results and referred to Valfajr Health Center, the National Collaborating Laboratory of Influenza and COVID-19 National Reference Laboratory at Pasteur Institute of Iran were recruited between January 2020 and January 2022. Nasopharyngeal and oropharyngeal swab samples were collected to detect 17 common respiratory viruses via TaqMan one-step real-time multiplex PCR. Demographic and clinical data of the participants were obtained from their electronic medical records. RESULTS: In total, 218 samples (21.8%) were tested positive for at least one respiratory virus infection. Most of the common investigated respiratory viruses belonged to the years 2020 and 2022. The number of investigated patients in 2021 was few, which highlights the impact of health measures following the COVID-19 pandemic in Iran. Influenza A was the most common virus (5.8%), while adenovirus had the lowest prevalence (0.1%). Although the rate of respiratory virus infection was higher in men (24%) compared to women (19.3%), this difference was not statistically significant (P = 0.069). The prevalence of respiratory viruses had an inverse association with increasing age, with the highest rate (55.6%) observed in the age group below 2 years and the lowest rate (12.7%) in those above 65 years. CONCLUSION: Our findings underscore the significance of adopting a comprehensive approach to respiratory infections detection and management. These results can be employed for the development of syndromic surveillance systems and implementation of the effective infection control measures. Furthermore, the results contribute to better understanding of the dynamics of respiratory viruses, both during pandemic periods and in non-pandemic contexts.


Assuntos
COVID-19 , Influenza Humana , Infecções Respiratórias , Masculino , Humanos , Feminino , Pré-Escolar , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Influenza Humana/epidemiologia , Irã (Geográfico)/epidemiologia , Estudos Transversais , Infecções Respiratórias/epidemiologia
6.
Mikrochim Acta ; 191(1): 36, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108890

RESUMO

A highly sensitive colorimetric method (glycan-based nano(e)zyme) was developed for sensitive and rapid detection of the SARS-CoV-2 virus based on N-acetyl neuraminic acid (sialic acid)-functionalized gold nanoparticles (SA-Au NZs). A number of techniques were used to characterize the prepared nanomaterials including XRD, FT-IR, UV-vis, DLS, and TEM. DLS analysis indicates an average hydrodynamic size of 34 nm, whereas TEM analysis indicates an average particle size of 15.78 nm. This observation confirms that water interacts with nanoparticle surfaces, resulting in a large hydrodynamic diameter. The peroxidase-like activity of SA-Au NZs was examined with SARS-CoV-2 and influenza viruses (influenza A (H1N1), influenza A (H3N2), and influenza B). UV-visible spectroscopy was used to monitor and record the results, as well as naked eye detection (photographs). SA-Au NZs exhibit a change in color from light red to purple when SARS-CoV-2 is present, and they exhibit a redshift in their spectrum. N-acetyl neuraminic acid interacts with SARS-CoV-2 spike glycoprotein, confirming its ability to bind glycans. As a result, SA-Au NZs can detect COVID-19 with sensitivity and specificity of over 95% and 98%, respectively. This method was approved by testing saliva samples from 533 suspected individuals at Ghaem Hospital of Mashhad, Mashhad, Iran. Sensitivity and specificity were calculated by comparing the results with the definitive results. The positive results were accompanied by a color change from bright red to purple within five minutes. Statistical analysis was performed based on variables such as age, gender, smoking, diabetes, hypertension, and lung involvement. In clinical trials, it was demonstrated that this method can be used to diagnose SARS-CoV-2 in a variety of places, such as medical centers, hospitals, airports, universities, and schools.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Ouro , Vírus da Influenza A Subtipo H3N2 , Saliva , Espectroscopia de Infravermelho com Transformada de Fourier
7.
BMC Microbiol ; 23(1): 335, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951883

RESUMO

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, the simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A, and Influenza B viruses is essential for rapid differential diagnosis in patients with similar symptoms, especially during "flu season" in the post-pandemic era. So far, several multiplex methods have been approved for the simultaneous detection of SARS-CoV-2, Influenza A, and Influenza B. However, due to the rapid mutation rate of the SARS-CoV-2 genome and the emergence of new variants, existing methods must be improved and updated. METHODS: To identify a highly conserved region in the SARS-CoV-2 N-gene, a genomic survey was performed to increase the sensitivity and specificity of primer and probe sets targeting the SARS-CoV-2 genome. The 95% LLOD (95% lower limits of detection) were calculated by probit analysis. A total of 70 predetermined clinical samples using singleplex RT-qPCR assays, were included. The clinical performance of the multiplex RT-qPCR assay was determined and compared with a commercial multiplex kit. The Cohen's kappa coefficient, P-value (McNemar's test), Passing-Bablok regression, and Bland Altman agreement analysis were determined to monitor the agreement of the assays. RESULTS: The novel SARS-CoV-2 primer and probe set designed in this assay was able to detect all variants of concern (VOCs) and variants of interest (VOIs) with high analytical and clinical performance. The 95% LLOD for the multiplex RT-qPCR was 20 copies per reaction for the N gene of SARS-CoV-2, 2 copies per reaction for M1 gene of Influenza A and NS1 gene of Influenza B. The diagnostic sensitivity of the multiplex RT-qPCR was 94.4%, 93.7%, and 100% for the detection of SARS-CoV-2, Influenza A, and Influenza B genomes, respectively. Moreover, the specificity was identical (100%) in both assays. According to the agreement analysis results, there was no statistical difference between our multiplex assay and the commercial kit. CONCLUSIONS: In this study, we developed a novel in-house made multiplex RT-qPCR assay, with high sensitivity, specificity, and reliability for the diagnosis of SARS-CoV-2 infection in clinical samples. This is valuable during Influenza seasons when influenza co-circulates with SARS-CoV-2, as it saves costs, time, and thus specific and timely treatment of patients.


Assuntos
COVID-19 , Herpesvirus Cercopitecino 1 , Influenza Humana , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Vírus da Influenza B/genética , Influenza Humana/diagnóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Heliyon ; 9(10): e20555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37810803

RESUMO

COVID-19 pandemic has been managed through global vaccination programs. However, the antibody waning in various types of vaccines came to notice. Hereby, PastoCovac Plus as a protein subunit vaccine was investigated in immunized health care workers by COVAXIN (BBV152). The booster vaccine was recommended at least three months post the second dose of COVAXIN. Sera collection was done before and after each injection. SARS-CoV-2 PCR test was done monthly to detect any asymptomatic and symptomatic vaccine breakthrough. 47.9 and 24.3% of the participants were seronegative for anti-N and anti-S antibodies three months after the second dose of COVAXIN, respectively. On average, fold-rises of 70, 93, 8 and mean-rises of 23.32, 892.4, 5.59 were recorded regarding neutralizing antibody, quantitative and semi-quantitative anti-Spike antibody, respectively. Anti-Spike and neutralizing antibodies seroconversion was seen 59.3% and 45.7%, respectively. The vaccine breakthrough assessment showed that all the isolated samples belonged to SARS-CoV-2 Delta variant. PastoCovac Plus boosting is strongly recommended in combination with inactivated vaccine platforms against SARS-CoV-2.

9.
J Biomol Struct Dyn ; : 1-17, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553776

RESUMO

Antiviral drugs are currently used to prevent or treat viral infections like influenza A Virus (IAV). Nonetheless, annual genetic mutations of influenza viruses make them resistant to efficient treatment by current medications. Antiviral peptides have recently attracted researchers' attention and can potentially supplant the current medications. This study aimed to design peptides against IAV propagation. For this purpose, P2 and P3 peptides were computationally designed based on the HCDR3 region of the C05 antibody (a monoclonal antibody that neutralizes influenza HA protein and inhibits the virus attachment). The synthesized peptides were tested against the influenza A virus (A/Puerto Rico/8/34 (H1N1)) in vitro, and the most efficient peptide was selected for in vivo experiments. It was shown that the designed peptide shows much more prophylactic and therapeutic effects against the virus. These findings demonstrated that the designed peptide can control the virus infection without any cytotoxicity effect. Antiviral peptide design is acknowledged as a critical tactic to manage viral infections by preventing viral binding to the host cells.Communicated by Ramaswamy H. Sarma.

10.
Virus Res ; 334: 199182, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490957

RESUMO

Influenza A viruses (H1N1) have been consistently one of the most evolving viruses that escape from vaccine-induced immunity. Although there has been a rapid rise in human influenza virus knowledge since the 2009 pandemic, the molecular information about Iranian strains is still inadequate. The aim of this study was to analyze the neuraminidase (NA) segment of the Iranian isolates in terms of phylogenetic, antiviral resistance, and vaccine efficiency. Ninety-three NA sequences collected among 1758 nasopharyngeal swab samples during the 2015-2016 influenza season were sequenced and submitted to NCBI. Moreover, all the submitted Iranian influenza H1N1 NA sequences since 2010 till 2019 were included in the study. Software including MEGA-X, MODELLER, UCSF ChimeraX, Auto-Dock 4.2, and other online tools were used to analyze the phylogenetic relationship, vaccine efficiency, and binding affinity to sialic acid of the selected NA proteins. Moreover, the information about antiviral drug resistance mutations of NA were gathered and compared to the Iranian NA segments to check the presence of antiviral drug-resistant strains. The phylogenetic study showed that most Iranian NA sequences (between 2015 and 2016) were located in a single clade and following years were located in its subclade by 3 major mutations (G77R/K, V81A, and J188T). Resistant mutations in drug targets of NA including I117M, D151E, I223V, and S247N were ascertained in 10 isolates during the 2015-2016 flu seasons. Investigation of vaccination effect revealed that Iranian isolates in 2017 and 2018 were best matched to A/Brisbane/02/2018 (H1N1), and in 2019 to A/Guangdong-Maonan/SWL1536/2019 (H1N1). Furthermore, we performed an in-silico analysis of NA enzymatic activity of all Iranian sequences by assessment of enzyme stability, ligand affinity, and active site availability. Overall, the enzyme activity of four Iranian strains (AUG84119, AUG84157, AUG84095, and AUG84100) was assumed as the maximum enzyme activity. This study highlighted the evolutionary trend of influenza A virus/H1N1 circulating in Iran, which provides a preliminary viewpoint for a better comprehension of new emerging strains' virulence and thus, more appropriate monitoring of influenza virus A/H1N1 during each outbreak season.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Antivirais/farmacologia , Farmacorresistência Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Influenza Humana/epidemiologia , Irã (Geográfico)/epidemiologia , Neuraminidase/genética , Filogenia
11.
Curr Microbiol ; 80(6): 212, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37191741

RESUMO

The immunogenicity and protective properties of the designed recombinant fusion peptide of 3M2e and truncated nucleoprotein (trNP), originating from Influenza A virus, were investigated in the BALB/c mice model in comparison with the Mix protein (3M2e + trNP). The results were evaluated by antibody response, cytokine production, lymphocyte proliferation assay, and mortality rate after challenge with homologous (H1N1) and heterologous (H3N2) influenza viruses in BALB/c mice. The animals that received the chimer protein with or without adjuvant had more specific antibody responses and elicited memory CD4 T cells, and cytokines of Th1 and Th2 cells compared to the Mix protein. Moreover, the Mix protein, like the recombinant chimer protein, provided equal and effective protection against both homologous and heterologous challenges in mice. Nevertheless, the chimer protein demonstrated superior immune protection compared to the Mix protein. The percentage of survived animals in the adjuvanted protein group (78.4%) was less than the non-adjuvanted one (85.7%). However, the Mix protein plus Alum could induce protective immunity in only 57.1% and 42.8% of homologous and heterologous virus-challenged mice, respectively. Regarding the sufficient immunogenicity and protectivity of the chimer protein construct against influenza viruses, the findings of the study suggest that the chimer protein without a requirement of adjuvant can be used as an adequate vaccine formulation to protect against a broad spectrum of influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Vírus da Influenza A Subtipo H3N2 , Anticorpos Antivirais , Adjuvantes Imunológicos/farmacologia , Camundongos Endogâmicos BALB C
12.
Virusdisease ; 34(1): 21-28, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37009253

RESUMO

Neuraminidase inhibitors are the only FDA-approved class of antiviral agents against influenza B viruses. Resistance to these drugs has been reported from different parts of the world; however, there seems to be not enough information about this issue in Iran. We aimed to study the genetic evolution of these viruses as well as the presence of possible mutations concerning drug resistance in northern Iran. RNA was extracted from naso- and oropharyngeal swabs and amplified by one-step RT-PCR for detection and sequencing of the neuraminidase gene. All the data were edited and assembled utilizing BioEdit DNASequence Alignment Editor Software, and the phylogenetic tree was constructed via MEGA software version 10. Finally, resistance-associated mutations and B-cell epitopes substitutions were assessed by comparing our sequences with the counterparts in the reference strains. Comparing our sequences with reference strains revealed that the analyzed isolates of influenza B pertained to the B-Yamagata lineage, had a few B-cell epitopes alterations, and contained no particular mutations concerning resistance against neuraminidase inhibitors, such as oseltamivir. Our findings suggest that all the strains circulating in northern Iran and hopefully other parts of the country can be considered sensitive to this class of drugs. Although it is promising, we strongly recommend additional investigations to evaluate the impact of such drug-resistant mutations in other regions, which in turn will assist the public health agencies in taking immediate and effective therapeutic measures into account when needed.

13.
Adv Biomed Res ; 12: 261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192891

RESUMO

Background: The current COVID-19 pandemic has highlighted the need for faster and more cost-effective diagnostic methods. The RNA extraction step in current diagnostic methods, such as real-time qPCR, increases the cost and time required for testing. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is a promising technique for developing diagnostic tests with desired sensitivity and specificity without the need for RNA extraction. Materials and Methods: An RT-LAMP assay was developed to detect SARS-CoV-2 with a sensitivity of 0.5 copies of positive control plasmid per microliter in 40 min. Several rapid RNA extraction protocols were evaluated using different reagents, including bovine serum albumin, Triton X-100, Tween 20, proteinase K, guanidine hydrochloride, guanidinium isothiocyanate (GITC), and thermal treatment. Finally, the sensitivity and specificity of the developed direct RT-LAMP were determined using 150 upper respiratory tract samples. Results: Method 10 was selected as the most efficient protocol for the RNA extraction step. The sensitivity and specificity of the developed direct RT-LAMP assay with clinical samples were estimated at 98.4% and 88.8%, respectively. Conclusion: These results suggest that the combination of GITC and Triton X-100 detergent is a highly efficient method for RNA extraction and direct RT-LAMP detection of SARS-CoV-2 in clinical samples, providing a valuable tool for the rapid and cost-effective diagnosis of COVID-19.

14.
Biosens Bioelectron X ; 12: 100233, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36097520

RESUMO

We report a label-free method for detection of the SARS-CoV-2 virus in nasopharyngeal swab samples without purification steps and multiplication of the target which simplifies and expedites the analysis process. The kit consists of a textile grid on which liquid crystals (LC) are deposited and the grid is placed in a crossed polarized microscopy. The swab samples are subsequently placed on the LCs. In the presence of a particular biomolecule, the direction of LCs changes locally based on the properties of the biomolecule and forms a particular pattern. As the swab samples are not perfectly purified, image processing and machine learning techniques are employed to detect the presence of specific molecules or quantify their concentrations in the medium. The method can differentiate negative and positive COVID-19 samples with an accuracy of 96% and also differentiate COVID-19 from influenza types A and B with an accuracy of 93%. The kit is portable, simple to manufacture, convenient to operate, cost effective, rapid and sensitive. The simplicity of the specimen processing, the speed of image acquisition, and fast diagnostic operations enable the deployment of the proposed technique for performing extensive on-spot screening of COVID-19 in public places.

16.
Viral Immunol ; 35(5): 365-374, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35527642

RESUMO

The effectiveness of inactivated H9N2 influenza vaccines is doubtful due to changes in antigenic regions of the virus hemagglutinin (HA) protein. One strategy for the development of the efficacious vaccine is the use of nanoparticles that display more immunogenic regions of the influenza virus. In this study, chitosan (CS)-based nanoparticles were developed as a delivery system for intranasal immunization using recombinant H9N2 virus HA1 and nucleoprotein (NP), for the induction of humoral and cellular responses. CS-HA1 and CS-NP nanoparticles were prepared by the ionic gelation method and characterized for their physicochemical properties and shape. The immunogenicity and the protective efficacy were evaluated by measuring antibody titers, T cell proliferation response, CD4+/CD8+ ratio, and quantitative real-time RT-PCR following intranasal administration of the prepared nanoparticles alone or in combination in chickens compared to an inactivated H9N2 vaccine. The average size, surface charge, and spherical structure of the synthesized nanoparticles showed high quality. Serologic analysis revealed that the immunization of inactivated vaccine groups resulted in strong influenza antibodies, which were significantly (p < 0.05) higher compared to the other groups. The vaccinated chickens with CS-HA1+CS-NP developed higher specific anti-influenza antibodies than in those vaccinated with each of rHA1 and rNP. Administration of a combination of the protein-based nanoparticles has stimulated the activation of both CD4+ and CD8+T cells and induced a significantly higher T cell proliferation. The viral shedding was significantly lower in CS-HA1+CS-NP and inactivated vaccine groups compared with other challenged groups. The data demonstrate the potential of CS-HA1+CS-NP nanoparticles for eliciting specific influenza antibodies and conferring protection in chickens.


Assuntos
Quitosana , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Influenza Humana , Nanopartículas , Animais , Anticorpos Antivirais , Galinhas , Humanos , Imunidade , Nanopartículas/química , Nucleoproteínas , Vacinas de Produtos Inativados
17.
Iran J Allergy Asthma Immunol ; 21(2): 207-214, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35490274

RESUMO

Utilizing subunit vaccines is one of the strategies to address influenza infection. Recent innovations have focused on high doses of vaccine antigens and immune enhancers or adjuvant to induce more robust and long-lasting immune responses. Here, an effect of the B cell-activating factor receptor (BAFF-R) to increase the magnitude and durability of immune responses of the recombinant HA1 (rHA1) protein against the H1N1 influenza virus was studied. The HA1 protein and the effector domain of BAFF-R were expressed in the pET-28a (+) vector. Eight-week-old BALB/c mice were equally grouped into five groups (n=20). The 15 and 25 µg/µL of rHA1 were mixed with 2 µg/µL of rBAFF-R and injected three times for vaccinated groups. Three control groups were received normal saline and two concentrations of rHA1. The ability of rBAFF-R in eliciting HA-specific antibody response and stimulating T lymphocyte proliferation to induce the cell-mediated immunity was assayed. Induction of protection was evaluated following the challenge with PR8 strain. Analysis of immune responses showed that the co-administration of rBAFF-R with rHA1 boosted HI responses to the antigen in mice, whilst it was not able to promote the T cell proliferation responses against influenza. Compared to rHA1alone, the rBAFF-R/rHA1 generated efficient protection for the animals. There were no significant differences in eliciting the immune responses in mice immunized with the lower dose of rHA1 than that with the higher dose. The data indicate the rBAFF-R can enhance the primary and memory immune responses to protect against influenza infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Linfócitos B , Citocinas , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle
18.
Virol J ; 19(1): 88, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606770

RESUMO

BACKGROUND: Influenza A virus (IAV) infection remains a serious public health threat. Due to drug resistance and side effects of the conventional antiviral drugs, repurposing the available natural compounds with high tolerability and fewer side effects has attracted researchers' attention. The aim of this study was to screen in vitro anti-influenza activity of three anionic compounds ascorbate, acetate, and citrate. METHODS: The non-cytotoxic concentration of the compounds was determined by MTT assay and examined for the activity against IAV in simultaneous, pre-, and post-penetration combination treatments over 1 h incubation on Madin-Darby Canine Kidney (MDCK) cell line. The virus titer and viral load were determined using hemagglutination assay (HA) and qPCR, respectively. Few pro-inflammatory and anti-inflammatory cytokines were evaluated at RNA and protein levels by qPCR and ELISA, respectively. RESULTS: The non-cytotoxic concentrations of the ascorbate (200 mg/ml), acetate and citrate (both 3 mg/ml) reduced the viral titer by 6.5, 4.5, and 1.5 logs in the simultaneous combination treatment. The M protein gene copy number decreased significantly in simultaneous treatment (P < 0.01). The expression of cytokines was also affected by the treatment of these compounds. CONCLUSIONS: These anionic compounds could affect the influenza virus load, thereby reducing pro-inflammatory cytokines and increasing anti-inflammatory cytokines levels.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Acetatos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Ácido Cítrico/farmacologia , Citocinas/metabolismo , Cães , Humanos , Células Madin Darby de Rim Canino
19.
Pathog Glob Health ; 116(7): 455-461, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35152854

RESUMO

Since working children have limited access to testing and monitoring for COVID-19, we decided to measure SARS-CoV-2 prevalence among them and compare it to non-working children. Our objective is to compare the frequency of SARS-CoV-2 genome and anti-SARS-CoV-2 antibody among working and non-working children. Volunteer child labor studying at Defense of Child Labor and Street Children and randomly selected 5-18-year-old (same range as child labor group) unemployed children participated in this study. The groups, respectively, had 65 and 137 members. This is an analytical cross-sectional study that surveys molecular prevalence of SARS-CoV-2 infection by RT-PCR, and seroprevalence of SARS-CoV-2 antibody by ELISA in working and non-working children. The IBM SPSS statistics software version 25 was used for data analysis. The χ2 or Fisher's exact test was used to analyze categorical dependent variables, for calculating odds ratios and 95% confidence intervals. Among the children enrolled in this study, molecular prevalence of SARS-CoV-2 turned out to be 18.5% in working children while it was 5.8% in unemployed children [aOR: 3.00 (CI95%: 1.00-7.00); P value: 0.003] and seroprevalence turned out to be 20% in working children vs 13.9% in non-working children [aOR: 1.000 (CI95%: 0.00-2.00); > P 0.001]. Equal SARS-CoV-2 viral load as adults and no symptoms or mild ones in children, coupled with working children's strong presence in crowded areas and their higher rate of COVID-19 prevalence, make them a probable source for spread of the virus.


Assuntos
COVID-19 , Trabalho Infantil , Adolescente , Adulto , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Genômica , Humanos , SARS-CoV-2/genética , Estudos Soroepidemiológicos
20.
Microb Pathog ; 161(Pt B): 105296, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34801646

RESUMO

Since the COVID-19 pandemic initiation, the possibility of re-infection has been unclearly present. Although herd immunity has a potential reliance through natural infection, human corona viruses has the ability to subvert immunity and re-infection happens for seasonal corona viruses. Currently, the frequency of SARS-CoV-2 re-infection incidence is not exactly defined. In this study we aimed at determination of SARS-CoV-2 re-infection rate in Iranian population. In a total of 5696 COVID-19 suspicious individuals, RT-PCR was applied to diagnose the infection. The confirmed patients were followed for 12 months and serology tests were applied to measure the specific antibodies. Among 1492 confirmed COVID-19 cases, five individuals experienced the subsequent infection. The re-infection/reactivation incidence rate was totally 0.33% after one year of follow-up. The interval ranged from 63 to 156 days. All the cases had viral mutations in the second episode of the infection. All of them were symptomatic cases with moderate severity. The estimated rate of SARS-CoV-2 in Persian population is therefore rare and natural infection seems to induce good protection against re-infection which clarifies that mass vaccination can hugely affect the society.


Assuntos
COVID-19 , Seguimentos , Humanos , Irã (Geográfico)/epidemiologia , Pandemias , Reinfecção , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA